

Machine Learning This Set of Slides

- Applications
- Naïve Bayes
- Main concepts
- Perceptron

Important Concepts		
•	 Data: labeled instances, e.g. emails marked spam/ham Training set Held out set Test set 	
•	Features: attribute-value pairs which characterize each x	Training Data
	 Experimentation cycle Learn parameters (e.g. model probabilities) on training set (Tune hyperparameters on held-out set) Compute accuracy of test set Very important: never "peek" at the test set! 	
•	EvaluationAccuracy: fraction of instances predicted correctly	Held-Out Data
•	 Overfitting and generalization Want a classifier which does well on <i>test</i> data Overfitting: fitting the training data very closely, but not generalizing well 	Test Data

