CS 188: Artificial Intelligence

Review of Machine Learning (ML)

DISCLAIMER: It is insufficient to simply study these slides, they are merely meant as a quick refresher of the high-level ideas covered. You need to study all materials covered in lecture, section, assignments and projects !

Pieter Abbeel - UC Berkeley
Many slides adapted from Dan Klein.

Machine Learning

- Up until now: how to reason in a model and how to make optimal decisions
- Machine learning: how to acquire a model on the basis of data / experience
- Learning parameters (e.g. probabilities)
- Learning structure (e.g. BN graphs)
- Learning hidden concepts (e.g. clustering)

Machine Learning This Set of Slides

- Applications
- Naïve Bayes
- Main concepts
- Perceptron

Example: Spam Filter

- Input: email
- Output: spam/ham
- Setup:
- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails
- Features: The attributes used to make the ham / spam decision
- Words: FREE!
- Text Patterns: \$dd, CAPS
- Non-text: SenderInContacts
- ...

Dear Sir.
First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

TO BE REMOVED FROM FUTURE
MAILINGS, SIMPLY REPLY TO THIS
MESSAGE AND PUT "REMOVE" IN THE
SUBJECT.
99 MILLION EMAIL ADDRESSES
FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9
- Setup:
- Get a large collection of example
- Get a large collection of example
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

0

- Features: The attributes used to make the digit decision
- Pixels: $(6,8)=O N$
- Shape Patterns: NumComponents, AspectRatio, NumLoops
2
1

- ...

Other Classification Tasks

- In classification, we predict labels y (classes) for inputs x
- Examples:
- Spam detection (input: document, classes: spam / ham)
- OCR (input: images, classes: characters)
- Medical diagnosis (input: symptoms, classes: diseases)
- Automatic essay grader (input: document, classes: grades)
- Fraud detection (input: account activity, classes: fraud / no fraud)
- Customer service email routing
- ... many more
- Classification is an important commercial technology!

Bayes Nets for Classification

- One method of classification:
- Use a probabilistic model!
- Features are observed random variables F_{i}
- Y is the query variable
- Use probabilistic inference to compute most likely Y

$$
y=\operatorname{argmax}_{y} P\left(y \mid f_{1} \ldots f_{n}\right)
$$

- You already know how to do this inference

General Naïve Bayes

- A general naive Bayes model:
$|\mathrm{Y}| \times|\mathrm{F}|^{\text {n }}$
parameters

$$
P\left(\mathrm{Y}, \mathrm{~F}_{1} \ldots \mathrm{~F}_{n}\right)=
$$

$$
P(\mathrm{Y}) \prod_{i} P\left(\mathrm{~F}_{i} \mid \mathrm{Y}\right)
$$

$|\mathrm{Y}|$ parameters
 parameters

- We only specify how each feature depends on the class
- Total number of parameters is linear in n

Inference for Naïve Bayes

- Goal: compute posterior over causes
- Step 1: get joint probability of causes and evidence

$$
P\left(Y, f_{1} \ldots f_{n}\right)=
$$

$\left[\begin{array}{c}P\left(y_{1}, f_{1} \ldots f_{n}\right) \\ P\left(y_{2}, f_{1} \ldots f_{n}\right) \\ \vdots \\ P\left(y_{k}, f_{1} \ldots f_{n}\right)\end{array}\right] \quad \square$

- Step 2: get probability of evidence
- Step 3: renormalize

$$
P\left(Y \mid f_{1} \ldots f_{n}\right)
$$

A Digit Recognizer

- Input: pixel grids

0

- Output: a digit 0-9

Naïve Bayes for Digits

- Simple version:
- One feature F_{ij} for each grid position <i,j>
- Possible feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
- Each input maps to a feature vector, e.g.

$$
1 \rightarrow\left\langle F_{0,0}=0 \quad F_{0,1}=0 \quad F_{0,2}=1 \quad F_{0,3}=1 \quad F_{0,4}=0 \ldots F_{15,15}=0\right\rangle
$$

- Here: lots of features, each is binary valued
- Naïve Bayes model:

$$
P\left(Y \mid F_{0,0} \ldots F_{15,15}\right) \propto P(Y) \prod_{i, j} P\left(F_{i, j} \mid Y\right)
$$

- What do we need to learn?

Examples: CPTs

$P(Y)$

1	0.1
2	0.1
3	0.1
4	0.1
5	0.1
6	0.1
7	0.1
8	0.1
9	0.1
0	0.1

Naïve Bayes for Text

- Bag-of-Words Naïve Bayes:
- Predict unknown class label (spam vs. ham)
- Assume evidence features (e.g. the words) are independent
- Warning: subtly different assumptions than before!

Word at position

- Generative model

$$
P\left(Y, W_{1} \ldots W_{n}\right)=P(Y) \prod_{i} P\left(W_{i} \mid Y\right)
$$ the dictionary!

- Tied distributions and bag-of-words
- Usually, each variable gets its own conditional probability distribution $\mathrm{P}(\mathrm{F} \mid \mathrm{Y})$
- In a bag-of-words model
- Each position is identically distributed
- All positions share the same conditional probs $\mathrm{P}(\mathrm{W} \mid \mathrm{C})$
- Why make this assumption?

Example: Overfitting

$P($ features,$Y=2)$
$P(Y=2)=0.1$
$P($ on $\mid Y=2)=0.8$
$P($ on $\mid Y=2)=0.1$
$P($ off $\mid Y=2)=0.1$
$P($ on $\mid Y=2)=0.01$

Example: Overfitting

- Posteriors determined by relative probabilities (odds ratios):

$$
\frac{P(W \mid \text { ham })}{P(W \mid \text { spam })}
$$

```
```

south-west : inf

```
```

south-west : inf
nation : inf
nation : inf
morally : inf
morally : inf
nicely : inf
nicely : inf
extent : inf
extent : inf
seriously : inf
seriously : inf
...

```
```

...

```
```

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
- Just because we never saw a 3 with pixel $(15,15)$ on during training doesn' t mean we won' t see it at test time
- Unlikely that every occurrence of "minute" is 100% spam
- Unlikely that every occurrence of "seriously" is 100% ham
- What about all the words that don' toccur in the training set at all?
- In general, we can't go around giving unseen events zero probability
- As an extreme case, imagine using the entire email as the only feature
- Would get the training data perfect (if deterministic labeling)
- Wouldn' generalize at all
- Just making the bag-of-words assumption gives us some generalization, but isn' t enough
- To generalize better: we need to smooth or regularize the estimates

Estimation: Smoothing

- Problems with maximum likelihood estimates:
- If I flip a coin once, and it's heads, what's the estimate for P (heads)?
- What if I flip 10 times with 8 heads?
- What if I flip 10 M times with 8 M heads?
- Basic idea:
- We have some prior expectation about parameters (here, the probability of heads)
- Given little evidence, we should skew towards our prior
- Given a lot of evidence, we should listen to the data

Estimation: Smoothing

- Relative frequencies are the maximum likelihood estimates

$$
\begin{aligned}
\theta_{M L} & =\arg \max _{\theta} P(\mathbf{X} \mid \theta) \quad \Rightarrow P_{\mathrm{ML}}(x)=\frac{\operatorname{count}(x)}{\text { total samples }} \\
& =\arg \max _{\theta} \prod_{i} P_{\theta}\left(X_{i}\right)
\end{aligned}
$$

- In Bayesian statistics, we think of the parameters as just another random variable, with its own distribution

$$
\begin{aligned}
\theta_{\text {MAP }} & =\underset{\theta}{\arg \max } P(\theta \mid \mathbf{X}) \\
& =\underset{\theta}{\arg \max } P(\mathbf{X} \mid \theta) P(\theta) / P(\mathbf{X}) \quad \square \\
& =\underset{\theta}{\arg \max } P(\mathbf{X} \mid \theta) P(\theta)
\end{aligned}
$$

Estimation: Laplace Smoothing

- Laplace' s estimate:
- Pretend you saw every outcome once more than you actually did

$$
\begin{aligned}
P_{L A P}(x) & =\frac{c(x)+1}{\sum_{x}[c(x)+1]} & & P_{M L}(X)= \\
& =\frac{c(x)+1}{N+|X|} & & P_{L A P}(X)=
\end{aligned}
$$

- Can derive this as a MAP estimate with Dirichlet priors (see cs281a)

Estimation: Laplace Smoothing

- Laplace's estimate (extended):
$H \quad T$
- Pretend you saw every outcome

$$
\begin{aligned}
& \text { k oxtra timoc } \\
& P_{L A P, k}(x)=\frac{c(x)+k}{N+k|X|}
\end{aligned}
$$

- What's Laplace with $\mathrm{k}=0$?
- k is the strength of the prior

$$
P_{L A P, 100}(X)=
$$

- Laplace for conditionals:
- Smooth each condition
${ }^{\mathrm{ir}}{ }_{P_{L A P, k}}(x \mid y)=\frac{c(x, y)+k}{c(y)+k|X|}$

Estimation: Linear Interpolation

- In practice, Laplace often performs poorly for $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$:
- When $|\mathrm{X}|$ is very large
- When $|\mathrm{Y}|$ is very large
- Another option: linear interpolation
- Also get $P(X)$ from the data
- Make sure the estimate of $P(X \mid Y)$ isn' t too different from $P(X)$

$$
P_{L I N}(x \mid y)=\alpha \widehat{P}(x \mid y)+(1.0-\alpha) \hat{P}(x)
$$

- What if α is 0 ? 1 ?

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

$$
\frac{P(W \mid \text { spam })}{P(W \mid \text { ham })}
$$

$$
\text { verdana : } 28.8
$$

$$
\text { Credit : } 28.4
$$

$$
\text { ORDER : } 27.2
$$

$$
\text { : } 26.9
$$

$$
\text { money : } 26.5
$$

...

Do these make more sense?

$$
\begin{aligned}
& \frac{P(W \mid \text { ham })}{P(W \mid \text { spam })} \\
& \text { helvetica : } 11.4 \\
& \text { seems : } 10.8 \\
& \text { group : } 10.2 \\
& \text { ago : } 8.4 \\
& \text { areas : } 8.3 \\
& \text {... }
\end{aligned}
$$

Tuning on Held-Out Data

- Now we' ve got two kinds of unknowns
- Parameters: the probabilities $P(Y \mid X), P(Y)$
- Hyperparameters, like the amount of smoothing to do: k, α
- Where to learn?
- Learn parameters from training data
- Must tune hyperparameters on different data
- Why?
- For each value of the hyperparameters, train and test on the held-out data

α
- Choose the best value and do a final test on the test data

Important Concepts

- Data: labeled instances, e.g. emails marked spam/ham
- Training set
- Held out set
- Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
- Learn parameters (e.g. model probabilities) on training set
- (Tune hyperparameters on held-out set)
- Compute accuracy of test set
- Very important: never "peek" at the test set!
- Evaluation
- Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
- Want a classifier which does well on test data
- Overfitting: fitting the training data very closely, but not generalizing well

Held-Out Data

Test
Data

Generative vs. Discriminative

- Generative classifiers:
- E.g. naïve Bayes
- A probabilistic model with evidence variables
- Query model for class variable given evidence
- Discriminative classifiers:
- No generative model, no Bayes rule, often no probabilities at all!
- Try to predict the label Y directly from X
- Robust, accurate with varied features
- Loosely: mistake driven rather than model driven

Binary Linear Decision Rule

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

Dot product $w \cdot f$ positive means the positive class

Binary Linear Decision Rule

- In the space of feature vectors
- Examples are points
- Any weight vector is a hyperplane
- One side corresponds to $Y=+1$
- Other corresponds to $Y=-1$
w

BIAS	$:$	-3
free	$:$	4
money	$:$	2
\ldots		

$-1=H A M$

$f \cdot w=0$

Binary Perceptron Update

- Start with zero weights
- For each training instance:
- Classify with current weights

$$
y= \begin{cases}+1 & \text { if } w \cdot f(x) \geq 0 \\ -1 & \text { if } w \cdot f(x)<0\end{cases}
$$

- If correct (i.e., $\mathrm{y}=\mathrm{y}^{*}$), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y^{*} is -1 .

$$
w=w+y^{*} \cdot f
$$

Multiclass Linear Decision Rule

- If we have multiple classes:
- A weight vector for each class:

w_{y}

- Score (activation) of a class y :

$$
w_{y} \cdot f(x)
$$

- Prediction highest score wins

$$
y=\arg \max _{y} w_{y} \cdot f(x)
$$

Example Exercise --- Which Category is Chosen?

$w_{S P O R T S}$	$w_{P O L I T I C S}$	$w_{T E C H}$
BIAS : -2	BIAS : 1	BIAS
win : 4	win : 2	win :
game : 4	game : 0	game :
vote : 0	vote : 4	vote : 0
the : 0	the : 0	the
.	\ldots	\ldots

Learning Multiclass Perceptron

- Start with zero weights
- Pick up training instances one by one
- Classify with current weights

$$
\begin{aligned}
y & =\arg \max _{y} w_{y} \cdot f(x) \\
& =\arg \max _{y} \sum_{i} w_{y, i} \cdot f_{i}(x)
\end{aligned}
$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$
\begin{aligned}
& w_{y}=w_{y}-f(x) \\
& w_{y^{*}}=w_{y^{*}}+f(x)
\end{aligned}
$$

Example

"win the vote"
"win the election"
"win the game"
$w_{S P O R T S}$

BIAS	$: 1$
win	$: 0$
game	$: 0$
vote	$: 0$
the	$: 0$
\ldots	

$w_{\text {POLITICS }}$

BIAS	$: 0$
win	$: 0$
game	$: 0$
vote	$: 0$
the	$: 0$
\ldots	

$w_{T} E C H$
BIAS $:-1$ win $: 0$ game $: 0$ vote $: 0$ the $: 0$ \ldots

Examples: Perceptron

- Separable Case

Properties of Perceptrons

- Separability: some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$
\text { mistakes }<\frac{k}{\delta^{2}}
$$

Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
- Averaging weight vectors over time can help (averaged perceptron)

- Mediocre generalization: finds a "barely" separating solution
- Overtraining: test / held-out accuracy usually rises, then falls
- Overtraining is a kind of overfitting

Fixing the Perceptron

- Idea: adjust the weight update to mitigate these effects
- MIRA*: choose an update size that fixes the current mistake...
- ... but, minimizes the change to w $\min _{w} \frac{1}{2} \sum_{y}\left\|w_{y}-w_{y}^{\prime}\right\|^{2}$

Guessed y instead of y^{*} on $w_{y^{*}} \cdot f(x) \geq w_{y} \cdot f(x)+1$

- The +1 helps to generalize
* Margin Infused Relaxed Algorithm
 example x with features $f(x)$

$$
\begin{aligned}
w_{y} & =w_{y}^{\prime}-\tau f(x) \\
w_{y^{*}} & =w_{y^{*}}^{\prime}+\tau f(x)
\end{aligned}
$$

Minimum Correcting Update

$\begin{array}{r} \min _{w} \frac{1}{2} \sum_{y}\left\\|w_{y}-w_{y}^{\prime}\right\\|^{2} \\ w_{y^{*}} \cdot f \geq w_{y} \cdot f+1 \end{array}$	$w_{y}=w_{y}^{\prime}-\tau f(x)$ $w_{y^{*}}=w_{y^{*}}^{\prime}+\tau f(x)$
$\begin{gathered} \min _{\tau}\\|\tau f\\|^{2} \\ w_{y^{*}} \cdot f \geq w_{y} \cdot f+1 \\ \underbrace{}_{\min _{\tau}} \tau^{2} \end{gathered}$	$\int \begin{gathered} \\ w_{y^{*}} \cdot f \\ \geq \\ w_{y} \cdot f+1 \end{gathered}$
$\begin{aligned} & \left(w_{y^{*}}^{\prime}+\tau f\right) \cdot f \geq\left(w_{y}^{\prime}-\tau f\right) \cdot f+1 \\ & \zeta \tau=\frac{\left(w_{y}^{\prime}-w_{y^{*}}^{\prime}\right) \cdot f+1}{2 f \cdot f} \end{aligned}$	$\tau=0$ min not $\tau=0$, or would not have made an error, so min will be where equality holds

Maximum Step Size

- In practice, it's also bad to make updates that are too large
- Example may be labeled incorrectly
- You may not have enough features
- Solution: cap the maximum possible value of τ with some constant C

$$
\tau^{*}=\min \left(\frac{\left(w_{y}^{\prime}-w_{y^{*}}^{\prime}\right) \cdot f+1}{2 f \cdot f}, C\right)
$$

- Corresponds to an optimization that assumes non-separable data

- Usually converges faster than perceptron
- Usually better, especially on noisy data

Extension: Web Search

$$
x=\text { "Apple Computers" }
$$

- Information retrieval:
- Given information needs, produce information
- Includes, e.g. web search, question answering, and classic IR
- Web search: not exactly classification, but rather ranking

Feature-Based Ranking

$x=$ "Apple Computers"

Now features depend on query and webpage.
E.g.: \#times word1 in query occurs, \#times word2 in query occurs, \#times all words in query occur in sequence, ..., page-rank

Perceptron for Ranking

- Inputs x
- Candidates y
- Many feature vectors: $f(x, y)$
- One weight vector: w
- Prediction:

$$
y=\arg \max _{y} w \cdot f(x, y)
$$

- Update (if wrong):

$$
w=w+f\left(x, y^{*}\right)-f(x, y)
$$

Classification: Comparison

- Naïve Bayes
- Builds a model training data
- Gives prediction probabilities
- Strong assumptions about feature independence
- One pass through data (counting)
- Perceptrons / MIRA:
- Makes less assumptions about data
- Mistake-driven learning
- Multiple passes through data (prediction)
- Often more accurate

